Skip to content

pydantic_ai.models.bedrock

Setup

For details on how to set up authentication with this model, see model configuration for Bedrock.

LatestBedrockModelNames module-attribute

LatestBedrockModelNames = Literal[
    "amazon.titan-tg1-large",
    "amazon.titan-text-lite-v1",
    "amazon.titan-text-express-v1",
    "us.amazon.nova-pro-v1:0",
    "us.amazon.nova-lite-v1:0",
    "us.amazon.nova-micro-v1:0",
    "anthropic.claude-3-5-sonnet-20241022-v2:0",
    "us.anthropic.claude-3-5-sonnet-20241022-v2:0",
    "anthropic.claude-3-5-haiku-20241022-v1:0",
    "us.anthropic.claude-3-5-haiku-20241022-v1:0",
    "anthropic.claude-instant-v1",
    "anthropic.claude-v2:1",
    "anthropic.claude-v2",
    "anthropic.claude-3-sonnet-20240229-v1:0",
    "us.anthropic.claude-3-sonnet-20240229-v1:0",
    "anthropic.claude-3-haiku-20240307-v1:0",
    "us.anthropic.claude-3-haiku-20240307-v1:0",
    "anthropic.claude-3-opus-20240229-v1:0",
    "us.anthropic.claude-3-opus-20240229-v1:0",
    "anthropic.claude-3-5-sonnet-20240620-v1:0",
    "us.anthropic.claude-3-5-sonnet-20240620-v1:0",
    "anthropic.claude-3-7-sonnet-20250219-v1:0",
    "us.anthropic.claude-3-7-sonnet-20250219-v1:0",
    "cohere.command-text-v14",
    "cohere.command-r-v1:0",
    "cohere.command-r-plus-v1:0",
    "cohere.command-light-text-v14",
    "meta.llama3-8b-instruct-v1:0",
    "meta.llama3-70b-instruct-v1:0",
    "meta.llama3-1-8b-instruct-v1:0",
    "us.meta.llama3-1-8b-instruct-v1:0",
    "meta.llama3-1-70b-instruct-v1:0",
    "us.meta.llama3-1-70b-instruct-v1:0",
    "meta.llama3-1-405b-instruct-v1:0",
    "us.meta.llama3-2-11b-instruct-v1:0",
    "us.meta.llama3-2-90b-instruct-v1:0",
    "us.meta.llama3-2-1b-instruct-v1:0",
    "us.meta.llama3-2-3b-instruct-v1:0",
    "us.meta.llama3-3-70b-instruct-v1:0",
    "mistral.mistral-7b-instruct-v0:2",
    "mistral.mixtral-8x7b-instruct-v0:1",
    "mistral.mistral-large-2402-v1:0",
    "mistral.mistral-large-2407-v1:0",
]

Latest Bedrock models.

BedrockModelName module-attribute

BedrockModelName = Union[str, LatestBedrockModelNames]

Possible Bedrock model names.

Since Bedrock supports a variety of date-stamped models, we explicitly list the latest models but allow any name in the type hints. See the Bedrock docs for a full list.

BedrockModelSettings

Bases: ModelSettings

Settings for Bedrock models.

ALL FIELDS MUST BE bedrock_ PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

See the Bedrock Converse API docs for a full list. See the boto3 implementation of the Bedrock Converse API.

Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
class BedrockModelSettings(ModelSettings, total=False):
    """Settings for Bedrock models.

    ALL FIELDS MUST BE `bedrock_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

    See [the Bedrock Converse API docs](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax) for a full list.
    See [the boto3 implementation](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock-runtime/client/converse.html) of the Bedrock Converse API.
    """

    bedrock_guardrail_config: GuardrailConfigurationTypeDef
    """Content moderation and safety settings for Bedrock API requests.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_GuardrailConfiguration.html>.
    """

    bedrock_performance_configuration: PerformanceConfigurationTypeDef
    """Performance optimization settings for model inference.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PerformanceConfiguration.html>.
    """

    bedrock_request_metadata: dict[str, str]
    """Additional metadata to attach to Bedrock API requests.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax>.
    """

    bedrock_additional_model_response_fields_paths: list[str]
    """JSON paths to extract additional fields from model responses.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html>.
    """

    bedrock_prompt_variables: Mapping[str, PromptVariableValuesTypeDef]
    """Variables for substitution into prompt templates.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PromptVariableValues.html>.
    """

    bedrock_additional_model_requests_fields: Mapping[str, Any]
    """Additional model-specific parameters to include in requests.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html>.
    """

bedrock_guardrail_config instance-attribute

bedrock_guardrail_config: GuardrailConfigurationTypeDef

Content moderation and safety settings for Bedrock API requests.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_GuardrailConfiguration.html.

bedrock_performance_configuration instance-attribute

bedrock_performance_configuration: (
    PerformanceConfigurationTypeDef
)

Performance optimization settings for model inference.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PerformanceConfiguration.html.

bedrock_request_metadata instance-attribute

bedrock_request_metadata: dict[str, str]

Additional metadata to attach to Bedrock API requests.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax.

bedrock_additional_model_response_fields_paths instance-attribute

bedrock_additional_model_response_fields_paths: list[str]

JSON paths to extract additional fields from model responses.

See more about it on https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html.

bedrock_prompt_variables instance-attribute

bedrock_prompt_variables: Mapping[
    str, PromptVariableValuesTypeDef
]

Variables for substitution into prompt templates.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PromptVariableValues.html.

bedrock_additional_model_requests_fields instance-attribute

bedrock_additional_model_requests_fields: Mapping[str, Any]

Additional model-specific parameters to include in requests.

See more about it on https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html.

BedrockConverseModel dataclass

Bases: Model

A model that uses the Bedrock Converse API.

Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
@dataclass(init=False)
class BedrockConverseModel(Model):
    """A model that uses the Bedrock Converse API."""

    client: BedrockRuntimeClient

    _model_name: BedrockModelName = field(repr=False)
    _system: str = field(default='bedrock', repr=False)

    @property
    def model_name(self) -> str:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider, ex: openai."""
        return self._system

    def __init__(
        self,
        model_name: BedrockModelName,
        *,
        provider: Literal['bedrock'] | Provider[BaseClient] = 'bedrock',
    ):
        """Initialize a Bedrock model.

        Args:
            model_name: The name of the model to use.
            model_name: The name of the Bedrock model to use. List of model names available
                [here](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
            provider: The provider to use for authentication and API access. Can be either the string
                'bedrock' or an instance of `Provider[BaseClient]`. If not provided, a new provider will be
                created using the other parameters.
        """
        self._model_name = model_name

        if isinstance(provider, str):
            provider = infer_provider(provider)
        self.client = cast('BedrockRuntimeClient', provider.client)

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[ToolTypeDef]:
        tools = [self._map_tool_definition(r) for r in model_request_parameters.function_tools]
        if model_request_parameters.output_tools:
            tools += [self._map_tool_definition(r) for r in model_request_parameters.output_tools]
        return tools

    @staticmethod
    def _map_tool_definition(f: ToolDefinition) -> ToolTypeDef:
        return {
            'toolSpec': {
                'name': f.name,
                'description': f.description,
                'inputSchema': {'json': f.parameters_json_schema},
            }
        }

    @property
    def base_url(self) -> str:
        return str(self.client.meta.endpoint_url)

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, usage.Usage]:
        settings = cast(BedrockModelSettings, model_settings or {})
        response = await self._messages_create(messages, False, settings, model_request_parameters)
        return await self._process_response(response)

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        settings = cast(BedrockModelSettings, model_settings or {})
        response = await self._messages_create(messages, True, settings, model_request_parameters)
        yield BedrockStreamedResponse(_model_name=self.model_name, _event_stream=response)

    async def _process_response(self, response: ConverseResponseTypeDef) -> tuple[ModelResponse, usage.Usage]:
        items: list[ModelResponsePart] = []
        if message := response['output'].get('message'):
            for item in message['content']:
                if text := item.get('text'):
                    items.append(TextPart(content=text))
                else:
                    tool_use = item.get('toolUse')
                    assert tool_use is not None, f'Found a content that is not a text or tool use: {item}'
                    items.append(
                        ToolCallPart(
                            tool_name=tool_use['name'],
                            args=tool_use['input'],
                            tool_call_id=tool_use['toolUseId'],
                        ),
                    )
        u = usage.Usage(
            request_tokens=response['usage']['inputTokens'],
            response_tokens=response['usage']['outputTokens'],
            total_tokens=response['usage']['totalTokens'],
        )
        return ModelResponse(items, model_name=self.model_name), u

    @overload
    async def _messages_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[True],
        model_settings: BedrockModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> EventStream[ConverseStreamOutputTypeDef]:
        pass

    @overload
    async def _messages_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[False],
        model_settings: BedrockModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ConverseResponseTypeDef:
        pass

    async def _messages_create(
        self,
        messages: list[ModelMessage],
        stream: bool,
        model_settings: BedrockModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ConverseResponseTypeDef | EventStream[ConverseStreamOutputTypeDef]:
        tools = self._get_tools(model_request_parameters)
        support_tools_choice = self.model_name.startswith(('anthropic', 'us.anthropic'))
        if not tools or not support_tools_choice:
            tool_choice: ToolChoiceTypeDef = {}
        elif not model_request_parameters.allow_text_output:
            tool_choice = {'any': {}}
        else:
            tool_choice = {'auto': {}}

        system_prompt, bedrock_messages = await self._map_messages(messages)
        inference_config = self._map_inference_config(model_settings)

        params: ConverseRequestTypeDef = {
            'modelId': self.model_name,
            'messages': bedrock_messages,
            'system': system_prompt,
            'inferenceConfig': inference_config,
        }

        # Bedrock supports a set of specific extra parameters
        if model_settings:
            if guardrail_config := model_settings.get('bedrock_guardrail_config', None):
                params['guardrailConfig'] = guardrail_config
            if performance_configuration := model_settings.get('bedrock_performance_configuration', None):
                params['performanceConfig'] = performance_configuration
            if request_metadata := model_settings.get('bedrock_request_metadata', None):
                params['requestMetadata'] = request_metadata
            if additional_model_response_fields_paths := model_settings.get(
                'bedrock_additional_model_response_fields_paths', None
            ):
                params['additionalModelResponseFieldPaths'] = additional_model_response_fields_paths
            if additional_model_requests_fields := model_settings.get('bedrock_additional_model_requests_fields', None):
                params['additionalModelRequestFields'] = additional_model_requests_fields
            if prompt_variables := model_settings.get('bedrock_prompt_variables', None):
                params['promptVariables'] = prompt_variables

        if tools:
            params['toolConfig'] = {'tools': tools}
            if tool_choice:
                params['toolConfig']['toolChoice'] = tool_choice

        if stream:
            model_response = await anyio.to_thread.run_sync(functools.partial(self.client.converse_stream, **params))
            model_response = model_response['stream']
        else:
            model_response = await anyio.to_thread.run_sync(functools.partial(self.client.converse, **params))
        return model_response

    @staticmethod
    def _map_inference_config(
        model_settings: ModelSettings | None,
    ) -> InferenceConfigurationTypeDef:
        model_settings = model_settings or {}
        inference_config: InferenceConfigurationTypeDef = {}

        if max_tokens := model_settings.get('max_tokens'):
            inference_config['maxTokens'] = max_tokens
        if temperature := model_settings.get('temperature'):
            inference_config['temperature'] = temperature
        if top_p := model_settings.get('top_p'):
            inference_config['topP'] = top_p
        if stop_sequences := model_settings.get('stop_sequences'):
            inference_config['stopSequences'] = stop_sequences

        return inference_config

    async def _map_messages(
        self, messages: list[ModelMessage]
    ) -> tuple[list[SystemContentBlockTypeDef], list[MessageUnionTypeDef]]:
        """Just maps a `pydantic_ai.Message` to the Bedrock `MessageUnionTypeDef`."""
        system_prompt: list[SystemContentBlockTypeDef] = []
        bedrock_messages: list[MessageUnionTypeDef] = []
        for m in messages:
            if isinstance(m, ModelRequest):
                for part in m.parts:
                    if isinstance(part, SystemPromptPart):
                        system_prompt.append({'text': part.content})
                    elif isinstance(part, UserPromptPart):
                        bedrock_messages.extend(await self._map_user_prompt(part))
                    elif isinstance(part, ToolReturnPart):
                        assert part.tool_call_id is not None
                        bedrock_messages.append(
                            {
                                'role': 'user',
                                'content': [
                                    {
                                        'toolResult': {
                                            'toolUseId': part.tool_call_id,
                                            'content': [{'text': part.model_response_str()}],
                                            'status': 'success',
                                        }
                                    }
                                ],
                            }
                        )
                    elif isinstance(part, RetryPromptPart):
                        # TODO(Marcelo): We need to add a test here.
                        if part.tool_name is None:  # pragma: no cover
                            bedrock_messages.append({'role': 'user', 'content': [{'text': part.model_response()}]})
                        else:
                            assert part.tool_call_id is not None
                            bedrock_messages.append(
                                {
                                    'role': 'user',
                                    'content': [
                                        {
                                            'toolResult': {
                                                'toolUseId': part.tool_call_id,
                                                'content': [{'text': part.model_response()}],
                                                'status': 'error',
                                            }
                                        }
                                    ],
                                }
                            )
            elif isinstance(m, ModelResponse):
                content: list[ContentBlockOutputTypeDef] = []
                for item in m.parts:
                    if isinstance(item, TextPart):
                        content.append({'text': item.content})
                    else:
                        assert isinstance(item, ToolCallPart)
                        content.append(self._map_tool_call(item))
                bedrock_messages.append({'role': 'assistant', 'content': content})
            else:
                assert_never(m)

        if instructions := self._get_instructions(messages):
            system_prompt.insert(0, {'text': instructions})

        return system_prompt, bedrock_messages

    @staticmethod
    async def _map_user_prompt(part: UserPromptPart) -> list[MessageUnionTypeDef]:
        content: list[ContentBlockUnionTypeDef] = []
        if isinstance(part.content, str):
            content.append({'text': part.content})
        else:
            document_count = 0
            for item in part.content:
                if isinstance(item, str):
                    content.append({'text': item})
                elif isinstance(item, BinaryContent):
                    format = item.format
                    if item.is_document:
                        document_count += 1
                        name = f'Document {document_count}'
                        assert format in ('pdf', 'txt', 'csv', 'doc', 'docx', 'xls', 'xlsx', 'html', 'md')
                        content.append({'document': {'name': name, 'format': format, 'source': {'bytes': item.data}}})
                    elif item.is_image:
                        assert format in ('jpeg', 'png', 'gif', 'webp')
                        content.append({'image': {'format': format, 'source': {'bytes': item.data}}})
                    elif item.is_video:
                        assert format in ('mkv', 'mov', 'mp4', 'webm', 'flv', 'mpeg', 'mpg', 'wmv', 'three_gp')
                        content.append({'video': {'format': format, 'source': {'bytes': item.data}}})
                    else:
                        raise NotImplementedError('Binary content is not supported yet.')
                elif isinstance(item, (ImageUrl, DocumentUrl, VideoUrl)):
                    response = await cached_async_http_client().get(item.url)
                    response.raise_for_status()
                    if item.kind == 'image-url':
                        format = item.media_type.split('/')[1]
                        assert format in ('jpeg', 'png', 'gif', 'webp'), f'Unsupported image format: {format}'
                        image: ImageBlockTypeDef = {'format': format, 'source': {'bytes': response.content}}
                        content.append({'image': image})

                    elif item.kind == 'document-url':
                        document_count += 1
                        name = f'Document {document_count}'
                        data = response.content
                        content.append({'document': {'name': name, 'format': item.format, 'source': {'bytes': data}}})

                    elif item.kind == 'video-url':
                        format = item.media_type.split('/')[1]
                        assert format in ('mkv', 'mov', 'mp4', 'webm', 'flv', 'mpeg', 'mpg', 'wmv', 'three_gp'), (
                            f'Unsupported video format: {format}'
                        )
                        video: VideoBlockTypeDef = {'format': format, 'source': {'bytes': response.content}}
                        content.append({'video': video})
                elif isinstance(item, AudioUrl):  # pragma: no cover
                    raise NotImplementedError('Audio is not supported yet.')
                else:
                    assert_never(item)
        return [{'role': 'user', 'content': content}]

    @staticmethod
    def _map_tool_call(t: ToolCallPart) -> ContentBlockOutputTypeDef:
        return {
            'toolUse': {'toolUseId': _utils.guard_tool_call_id(t=t), 'name': t.tool_name, 'input': t.args_as_dict()}
        }

model_name property

model_name: str

The model name.

system property

system: str

The system / model provider, ex: openai.

__init__

__init__(
    model_name: BedrockModelName,
    *,
    provider: (
        Literal["bedrock"] | Provider[BaseClient]
    ) = "bedrock"
)

Initialize a Bedrock model.

Parameters:

Name Type Description Default
model_name BedrockModelName

The name of the model to use.

required
model_name BedrockModelName

The name of the Bedrock model to use. List of model names available here.

required
provider Literal['bedrock'] | Provider[BaseClient]

The provider to use for authentication and API access. Can be either the string 'bedrock' or an instance of Provider[BaseClient]. If not provided, a new provider will be created using the other parameters.

'bedrock'
Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def __init__(
    self,
    model_name: BedrockModelName,
    *,
    provider: Literal['bedrock'] | Provider[BaseClient] = 'bedrock',
):
    """Initialize a Bedrock model.

    Args:
        model_name: The name of the model to use.
        model_name: The name of the Bedrock model to use. List of model names available
            [here](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
        provider: The provider to use for authentication and API access. Can be either the string
            'bedrock' or an instance of `Provider[BaseClient]`. If not provided, a new provider will be
            created using the other parameters.
    """
    self._model_name = model_name

    if isinstance(provider, str):
        provider = infer_provider(provider)
    self.client = cast('BedrockRuntimeClient', provider.client)

BedrockStreamedResponse dataclass

Bases: StreamedResponse

Implementation of StreamedResponse for Bedrock models.

Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
@dataclass
class BedrockStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for Bedrock models."""

    _model_name: BedrockModelName
    _event_stream: EventStream[ConverseStreamOutputTypeDef]
    _timestamp: datetime = field(default_factory=_utils.now_utc)

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        """Return an async iterator of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s.

        This method should be implemented by subclasses to translate the vendor-specific stream of events into
        pydantic_ai-format events.
        """
        chunk: ConverseStreamOutputTypeDef
        tool_id: str | None = None
        async for chunk in _AsyncIteratorWrapper(self._event_stream):
            # TODO(Marcelo): Switch this to `match` when we drop Python 3.9 support.
            if 'messageStart' in chunk:
                continue
            if 'messageStop' in chunk:
                continue
            if 'metadata' in chunk:
                if 'usage' in chunk['metadata']:
                    self._usage += self._map_usage(chunk['metadata'])
                continue
            if 'contentBlockStart' in chunk:
                index = chunk['contentBlockStart']['contentBlockIndex']
                start = chunk['contentBlockStart']['start']
                if 'toolUse' in start:
                    tool_use_start = start['toolUse']
                    tool_id = tool_use_start['toolUseId']
                    tool_name = tool_use_start['name']
                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=index,
                        tool_name=tool_name,
                        args=None,
                        tool_call_id=tool_id,
                    )
                    if maybe_event:
                        yield maybe_event
            if 'contentBlockDelta' in chunk:
                index = chunk['contentBlockDelta']['contentBlockIndex']
                delta = chunk['contentBlockDelta']['delta']
                if 'text' in delta:
                    yield self._parts_manager.handle_text_delta(vendor_part_id=index, content=delta['text'])
                if 'toolUse' in delta:
                    tool_use = delta['toolUse']
                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=index,
                        tool_name=tool_use.get('name'),
                        args=tool_use.get('input'),
                        tool_call_id=tool_id,
                    )
                    if maybe_event:
                        yield maybe_event

    @property
    def timestamp(self) -> datetime:
        return self._timestamp

    @property
    def model_name(self) -> str:
        """Get the model name of the response."""
        return self._model_name

    def _map_usage(self, metadata: ConverseStreamMetadataEventTypeDef) -> usage.Usage:
        return usage.Usage(
            request_tokens=metadata['usage']['inputTokens'],
            response_tokens=metadata['usage']['outputTokens'],
            total_tokens=metadata['usage']['totalTokens'],
        )

model_name property

model_name: str

Get the model name of the response.