Skip to content

pydantic_ai.models.openai

Setup

For details on how to set up authentication with this model, see model configuration for OpenAI.

OpenAIModelName module-attribute

OpenAIModelName = Union[str, ChatModel]

Possible OpenAI model names.

Since OpenAI supports a variety of date-stamped models, we explicitly list the latest models but allow any name in the type hints. See the OpenAI docs for a full list.

Using this more broad type for the model name instead of the ChatModel definition allows this model to be used more easily with other model types (ie, Ollama, Deepseek).

OpenAIModelSettings

Bases: ModelSettings

Settings used for an OpenAI model request.

ALL FIELDS MUST BE openai_ PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
class OpenAIModelSettings(ModelSettings, total=False):
    """Settings used for an OpenAI model request.

    ALL FIELDS MUST BE `openai_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.
    """

    openai_reasoning_effort: ReasoningEffort
    """Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning).

    Currently supported values are `low`, `medium`, and `high`. Reducing reasoning effort can
    result in faster responses and fewer tokens used on reasoning in a response.
    """

    openai_user: str
    """A unique identifier representing the end-user, which can help OpenAI monitor and detect abuse.

    See [OpenAI's safety best practices](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids) for more details.
    """

openai_reasoning_effort instance-attribute

openai_reasoning_effort: ReasoningEffort

Constrains effort on reasoning for reasoning models.

Currently supported values are low, medium, and high. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response.

openai_user instance-attribute

openai_user: str

A unique identifier representing the end-user, which can help OpenAI monitor and detect abuse.

See OpenAI's safety best practices for more details.

OpenAIResponsesModelSettings

Bases: OpenAIModelSettings

Settings used for an OpenAI Responses model request.

ALL FIELDS MUST BE openai_ PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
class OpenAIResponsesModelSettings(OpenAIModelSettings, total=False):
    """Settings used for an OpenAI Responses model request.

    ALL FIELDS MUST BE `openai_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.
    """

    openai_builtin_tools: Sequence[FileSearchToolParam | WebSearchToolParam | ComputerToolParam]
    """The provided OpenAI built-in tools to use.

    See [OpenAI's built-in tools](https://platform.openai.com/docs/guides/tools?api-mode=responses) for more details.
    """

    openai_reasoning_generate_summary: Literal['detailed', 'concise']
    """A summary of the reasoning performed by the model.

    This can be useful for debugging and understanding the model's reasoning process.
    One of `concise` or `detailed`.

    Check the [OpenAI Computer use documentation](https://platform.openai.com/docs/guides/tools-computer-use#1-send-a-request-to-the-model)
    for more details.
    """

    openai_truncation: Literal['disabled', 'auto']
    """The truncation strategy to use for the model response.

    It can be either:
    - `disabled` (default): If a model response will exceed the context window size for a model, the
        request will fail with a 400 error.
    - `auto`: If the context of this response and previous ones exceeds the model's context window size,
        the model will truncate the response to fit the context window by dropping input items in the
        middle of the conversation.
    """

openai_builtin_tools instance-attribute

openai_builtin_tools: Sequence[
    FileSearchToolParam
    | WebSearchToolParam
    | ComputerToolParam
]

The provided OpenAI built-in tools to use.

See OpenAI's built-in tools for more details.

openai_reasoning_generate_summary instance-attribute

openai_reasoning_generate_summary: Literal[
    "detailed", "concise"
]

A summary of the reasoning performed by the model.

This can be useful for debugging and understanding the model's reasoning process. One of concise or detailed.

Check the OpenAI Computer use documentation for more details.

openai_truncation instance-attribute

openai_truncation: Literal['disabled', 'auto']

The truncation strategy to use for the model response.

It can be either: - disabled (default): If a model response will exceed the context window size for a model, the request will fail with a 400 error. - auto: If the context of this response and previous ones exceeds the model's context window size, the model will truncate the response to fit the context window by dropping input items in the middle of the conversation.

OpenAIModel dataclass

Bases: Model

A model that uses the OpenAI API.

Internally, this uses the OpenAI Python client to interact with the API.

Apart from __init__, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
@dataclass(init=False)
class OpenAIModel(Model):
    """A model that uses the OpenAI API.

    Internally, this uses the [OpenAI Python client](https://github.com/openai/openai-python) to interact with the API.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    client: AsyncOpenAI = field(repr=False)
    system_prompt_role: OpenAISystemPromptRole | None = field(default=None, repr=False)

    _model_name: OpenAIModelName = field(repr=False)
    _system: str = field(default='openai', repr=False)

    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal['openai', 'deepseek', 'azure'] | Provider[AsyncOpenAI] = 'openai',
        system_prompt_role: OpenAISystemPromptRole | None = None,
    ):
        """Initialize an OpenAI model.

        Args:
            model_name: The name of the OpenAI model to use. List of model names available
                [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
                (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
            provider: The provider to use. Defaults to `'openai'`.
            system_prompt_role: The role to use for the system prompt message. If not provided, defaults to `'system'`.
                In the future, this may be inferred from the model name.
        """
        self._model_name = model_name
        if isinstance(provider, str):
            provider = infer_provider(provider)
        self.client = provider.client
        self.system_prompt_role = system_prompt_role

    @property
    def base_url(self) -> str:
        return str(self.client.base_url)

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, usage.Usage]:
        check_allow_model_requests()
        response = await self._completions_create(
            messages, False, cast(OpenAIModelSettings, model_settings or {}), model_request_parameters
        )
        return self._process_response(response), _map_usage(response)

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        check_allow_model_requests()
        response = await self._completions_create(
            messages, True, cast(OpenAIModelSettings, model_settings or {}), model_request_parameters
        )
        async with response:
            yield await self._process_streamed_response(response)

    def customize_request_parameters(self, model_request_parameters: ModelRequestParameters) -> ModelRequestParameters:
        return _customize_request_parameters(model_request_parameters)

    @property
    def model_name(self) -> OpenAIModelName:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider."""
        return self._system

    @overload
    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[True],
        model_settings: OpenAIModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncStream[ChatCompletionChunk]: ...

    @overload
    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[False],
        model_settings: OpenAIModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> chat.ChatCompletion: ...

    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: bool,
        model_settings: OpenAIModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> chat.ChatCompletion | AsyncStream[ChatCompletionChunk]:
        tools = self._get_tools(model_request_parameters)

        # standalone function to make it easier to override
        if not tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif not model_request_parameters.allow_text_output:
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        openai_messages = await self._map_messages(messages)

        try:
            return await self.client.chat.completions.create(
                model=self._model_name,
                messages=openai_messages,
                n=1,
                parallel_tool_calls=model_settings.get('parallel_tool_calls', NOT_GIVEN),
                tools=tools or NOT_GIVEN,
                tool_choice=tool_choice or NOT_GIVEN,
                stream=stream,
                stream_options={'include_usage': True} if stream else NOT_GIVEN,
                stop=model_settings.get('stop_sequences', NOT_GIVEN),
                max_completion_tokens=model_settings.get('max_tokens', NOT_GIVEN),
                temperature=model_settings.get('temperature', NOT_GIVEN),
                top_p=model_settings.get('top_p', NOT_GIVEN),
                timeout=model_settings.get('timeout', NOT_GIVEN),
                seed=model_settings.get('seed', NOT_GIVEN),
                presence_penalty=model_settings.get('presence_penalty', NOT_GIVEN),
                frequency_penalty=model_settings.get('frequency_penalty', NOT_GIVEN),
                logit_bias=model_settings.get('logit_bias', NOT_GIVEN),
                reasoning_effort=model_settings.get('openai_reasoning_effort', NOT_GIVEN),
                user=model_settings.get('openai_user', NOT_GIVEN),
                extra_headers={'User-Agent': get_user_agent()},
            )
        except APIStatusError as e:
            if (status_code := e.status_code) >= 400:
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.body) from e
            raise

    def _process_response(self, response: chat.ChatCompletion) -> ModelResponse:
        """Process a non-streamed response, and prepare a message to return."""
        timestamp = datetime.fromtimestamp(response.created, tz=timezone.utc)
        choice = response.choices[0]
        items: list[ModelResponsePart] = []
        if choice.message.content is not None:
            items.append(TextPart(choice.message.content))
        if choice.message.tool_calls is not None:
            for c in choice.message.tool_calls:
                items.append(ToolCallPart(c.function.name, c.function.arguments, tool_call_id=c.id))
        return ModelResponse(items, model_name=response.model, timestamp=timestamp)

    async def _process_streamed_response(self, response: AsyncStream[ChatCompletionChunk]) -> OpenAIStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        peekable_response = _utils.PeekableAsyncStream(response)
        first_chunk = await peekable_response.peek()
        if isinstance(first_chunk, _utils.Unset):
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls')

        return OpenAIStreamedResponse(
            _model_name=self._model_name,
            _response=peekable_response,
            _timestamp=datetime.fromtimestamp(first_chunk.created, tz=timezone.utc),
        )

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[chat.ChatCompletionToolParam]:
        tools = [self._map_tool_definition(r) for r in model_request_parameters.function_tools]
        if model_request_parameters.output_tools:
            tools += [self._map_tool_definition(r) for r in model_request_parameters.output_tools]
        return tools

    async def _map_messages(self, messages: list[ModelMessage]) -> list[chat.ChatCompletionMessageParam]:
        """Just maps a `pydantic_ai.Message` to a `openai.types.ChatCompletionMessageParam`."""
        openai_messages: list[chat.ChatCompletionMessageParam] = []
        for message in messages:
            if isinstance(message, ModelRequest):
                async for item in self._map_user_message(message):
                    openai_messages.append(item)
            elif isinstance(message, ModelResponse):
                texts: list[str] = []
                tool_calls: list[chat.ChatCompletionMessageToolCallParam] = []
                for item in message.parts:
                    if isinstance(item, TextPart):
                        texts.append(item.content)
                    elif isinstance(item, ToolCallPart):
                        tool_calls.append(self._map_tool_call(item))
                    else:
                        assert_never(item)
                message_param = chat.ChatCompletionAssistantMessageParam(role='assistant')
                if texts:
                    # Note: model responses from this model should only have one text item, so the following
                    # shouldn't merge multiple texts into one unless you switch models between runs:
                    message_param['content'] = '\n\n'.join(texts)
                if tool_calls:
                    message_param['tool_calls'] = tool_calls
                openai_messages.append(message_param)
            else:
                assert_never(message)
        if instructions := self._get_instructions(messages):
            openai_messages.insert(0, chat.ChatCompletionSystemMessageParam(content=instructions, role='system'))
        return openai_messages

    @staticmethod
    def _map_tool_call(t: ToolCallPart) -> chat.ChatCompletionMessageToolCallParam:
        return chat.ChatCompletionMessageToolCallParam(
            id=_guard_tool_call_id(t=t),
            type='function',
            function={'name': t.tool_name, 'arguments': t.args_as_json_str()},
        )

    @staticmethod
    def _map_tool_definition(f: ToolDefinition) -> chat.ChatCompletionToolParam:
        tool_param: chat.ChatCompletionToolParam = {
            'type': 'function',
            'function': {
                'name': f.name,
                'description': f.description,
                'parameters': f.parameters_json_schema,
            },
        }
        if f.strict:
            tool_param['function']['strict'] = f.strict
        return tool_param

    async def _map_user_message(self, message: ModelRequest) -> AsyncIterable[chat.ChatCompletionMessageParam]:
        for part in message.parts:
            if isinstance(part, SystemPromptPart):
                if self.system_prompt_role == 'developer':
                    yield chat.ChatCompletionDeveloperMessageParam(role='developer', content=part.content)
                elif self.system_prompt_role == 'user':
                    yield chat.ChatCompletionUserMessageParam(role='user', content=part.content)
                else:
                    yield chat.ChatCompletionSystemMessageParam(role='system', content=part.content)
            elif isinstance(part, UserPromptPart):
                yield await self._map_user_prompt(part)
            elif isinstance(part, ToolReturnPart):
                yield chat.ChatCompletionToolMessageParam(
                    role='tool',
                    tool_call_id=_guard_tool_call_id(t=part),
                    content=part.model_response_str(),
                )
            elif isinstance(part, RetryPromptPart):
                if part.tool_name is None:
                    yield chat.ChatCompletionUserMessageParam(role='user', content=part.model_response())
                else:
                    yield chat.ChatCompletionToolMessageParam(
                        role='tool',
                        tool_call_id=_guard_tool_call_id(t=part),
                        content=part.model_response(),
                    )
            else:
                assert_never(part)

    @staticmethod
    async def _map_user_prompt(part: UserPromptPart) -> chat.ChatCompletionUserMessageParam:
        content: str | list[ChatCompletionContentPartParam]
        if isinstance(part.content, str):
            content = part.content
        else:
            content = []
            for item in part.content:
                if isinstance(item, str):
                    content.append(ChatCompletionContentPartTextParam(text=item, type='text'))
                elif isinstance(item, ImageUrl):
                    image_url = ImageURL(url=item.url)
                    content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
                elif isinstance(item, BinaryContent):
                    base64_encoded = base64.b64encode(item.data).decode('utf-8')
                    if item.is_image:
                        image_url = ImageURL(url=f'data:{item.media_type};base64,{base64_encoded}')
                        content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
                    elif item.is_audio:
                        assert item.format in ('wav', 'mp3')
                        audio = InputAudio(data=base64_encoded, format=item.format)
                        content.append(ChatCompletionContentPartInputAudioParam(input_audio=audio, type='input_audio'))
                    else:  # pragma: no cover
                        raise RuntimeError(f'Unsupported binary content type: {item.media_type}')
                elif isinstance(item, AudioUrl):  # pragma: no cover
                    client = cached_async_http_client()
                    response = await client.get(item.url)
                    response.raise_for_status()
                    base64_encoded = base64.b64encode(response.content).decode('utf-8')
                    audio = InputAudio(data=base64_encoded, format=response.headers.get('content-type'))
                    content.append(ChatCompletionContentPartInputAudioParam(input_audio=audio, type='input_audio'))
                elif isinstance(item, DocumentUrl):  # pragma: no cover
                    raise NotImplementedError('DocumentUrl is not supported for OpenAI')
                    # The following implementation should have worked, but it seems we have the following error:
                    # pydantic_ai.exceptions.ModelHTTPError: status_code: 400, model_name: gpt-4o, body:
                    # {
                    #   'message': "Unknown parameter: 'messages[1].content[1].file.data'.",
                    #   'type': 'invalid_request_error',
                    #   'param': 'messages[1].content[1].file.data',
                    #   'code': 'unknown_parameter'
                    # }
                    #
                    # client = cached_async_http_client()
                    # response = await client.get(item.url)
                    # response.raise_for_status()
                    # base64_encoded = base64.b64encode(response.content).decode('utf-8')
                    # media_type = response.headers.get('content-type').split(';')[0]
                    # file_data = f'data:{media_type};base64,{base64_encoded}'
                    # file = File(file={'file_data': file_data, 'file_name': item.url, 'file_id': item.url}, type='file')
                    # content.append(file)
                elif isinstance(item, VideoUrl):  # pragma: no cover
                    raise NotImplementedError('VideoUrl is not supported for OpenAI')
                else:
                    assert_never(item)
        return chat.ChatCompletionUserMessageParam(role='user', content=content)

__init__

__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal["openai", "deepseek", "azure"]
        | Provider[AsyncOpenAI]
    ) = "openai",
    system_prompt_role: OpenAISystemPromptRole | None = None
)

Initialize an OpenAI model.

Parameters:

Name Type Description Default
model_name OpenAIModelName

The name of the OpenAI model to use. List of model names available here (Unfortunately, despite being ask to do so, OpenAI do not provide .inv files for their API).

required
provider Literal['openai', 'deepseek', 'azure'] | Provider[AsyncOpenAI]

The provider to use. Defaults to 'openai'.

'openai'
system_prompt_role OpenAISystemPromptRole | None

The role to use for the system prompt message. If not provided, defaults to 'system'. In the future, this may be inferred from the model name.

None
Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def __init__(
    self,
    model_name: OpenAIModelName,
    *,
    provider: Literal['openai', 'deepseek', 'azure'] | Provider[AsyncOpenAI] = 'openai',
    system_prompt_role: OpenAISystemPromptRole | None = None,
):
    """Initialize an OpenAI model.

    Args:
        model_name: The name of the OpenAI model to use. List of model names available
            [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
            (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
        provider: The provider to use. Defaults to `'openai'`.
        system_prompt_role: The role to use for the system prompt message. If not provided, defaults to `'system'`.
            In the future, this may be inferred from the model name.
    """
    self._model_name = model_name
    if isinstance(provider, str):
        provider = infer_provider(provider)
    self.client = provider.client
    self.system_prompt_role = system_prompt_role

model_name property

model_name: OpenAIModelName

The model name.

system property

system: str

The system / model provider.

OpenAIResponsesModel dataclass

Bases: Model

A model that uses the OpenAI Responses API.

The OpenAI Responses API is the new API for OpenAI models.

The Responses API has built-in tools, that you can use instead of building your own:

Use the openai_builtin_tools setting to add these tools to your model.

If you are interested in the differences between the Responses API and the Chat Completions API, see the OpenAI API docs.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
@dataclass(init=False)
class OpenAIResponsesModel(Model):
    """A model that uses the OpenAI Responses API.

    The [OpenAI Responses API](https://platform.openai.com/docs/api-reference/responses) is the
    new API for OpenAI models.

    The Responses API has built-in tools, that you can use instead of building your own:

    - [Web search](https://platform.openai.com/docs/guides/tools-web-search)
    - [File search](https://platform.openai.com/docs/guides/tools-file-search)
    - [Computer use](https://platform.openai.com/docs/guides/tools-computer-use)

    Use the `openai_builtin_tools` setting to add these tools to your model.

    If you are interested in the differences between the Responses API and the Chat Completions API,
    see the [OpenAI API docs](https://platform.openai.com/docs/guides/responses-vs-chat-completions).
    """

    client: AsyncOpenAI = field(repr=False)
    system_prompt_role: OpenAISystemPromptRole | None = field(default=None)

    _model_name: OpenAIModelName = field(repr=False)
    _system: str = field(default='openai', repr=False)

    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal['openai', 'deepseek', 'azure'] | Provider[AsyncOpenAI] = 'openai',
    ):
        """Initialize an OpenAI Responses model.

        Args:
            model_name: The name of the OpenAI model to use.
            provider: The provider to use. Defaults to `'openai'`.
        """
        self._model_name = model_name
        if isinstance(provider, str):
            provider = infer_provider(provider)
        self.client = provider.client

    @property
    def model_name(self) -> OpenAIModelName:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider."""
        return self._system

    async def request(
        self,
        messages: list[ModelRequest | ModelResponse],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, usage.Usage]:
        check_allow_model_requests()
        response = await self._responses_create(
            messages, False, cast(OpenAIResponsesModelSettings, model_settings or {}), model_request_parameters
        )
        return self._process_response(response), _map_usage(response)

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        check_allow_model_requests()
        response = await self._responses_create(
            messages, True, cast(OpenAIResponsesModelSettings, model_settings or {}), model_request_parameters
        )
        async with response:
            yield await self._process_streamed_response(response)

    def customize_request_parameters(self, model_request_parameters: ModelRequestParameters) -> ModelRequestParameters:
        return _customize_request_parameters(model_request_parameters)

    def _process_response(self, response: responses.Response) -> ModelResponse:
        """Process a non-streamed response, and prepare a message to return."""
        timestamp = datetime.fromtimestamp(response.created_at, tz=timezone.utc)
        items: list[ModelResponsePart] = []
        items.append(TextPart(response.output_text))
        for item in response.output:
            if item.type == 'function_call':
                items.append(ToolCallPart(item.name, item.arguments, tool_call_id=item.call_id))
        return ModelResponse(items, model_name=response.model, timestamp=timestamp)

    async def _process_streamed_response(
        self, response: AsyncStream[responses.ResponseStreamEvent]
    ) -> OpenAIResponsesStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        peekable_response = _utils.PeekableAsyncStream(response)
        first_chunk = await peekable_response.peek()
        if isinstance(first_chunk, _utils.Unset):  # pragma: no cover
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls')

        assert isinstance(first_chunk, responses.ResponseCreatedEvent)
        return OpenAIResponsesStreamedResponse(
            _model_name=self._model_name,
            _response=peekable_response,
            _timestamp=datetime.fromtimestamp(first_chunk.response.created_at, tz=timezone.utc),
        )

    @overload
    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: Literal[False],
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> responses.Response: ...

    @overload
    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: Literal[True],
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncStream[responses.ResponseStreamEvent]: ...

    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: bool,
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> responses.Response | AsyncStream[responses.ResponseStreamEvent]:
        tools = self._get_tools(model_request_parameters)
        tools = list(model_settings.get('openai_builtin_tools', [])) + tools

        # standalone function to make it easier to override
        if not tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif not model_request_parameters.allow_text_output:
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        instructions, openai_messages = await self._map_messages(messages)
        reasoning = self._get_reasoning(model_settings)

        try:
            return await self.client.responses.create(
                input=openai_messages,
                model=self._model_name,
                instructions=instructions,
                parallel_tool_calls=model_settings.get('parallel_tool_calls', NOT_GIVEN),
                tools=tools or NOT_GIVEN,
                tool_choice=tool_choice or NOT_GIVEN,
                max_output_tokens=model_settings.get('max_tokens', NOT_GIVEN),
                stream=stream,
                temperature=model_settings.get('temperature', NOT_GIVEN),
                top_p=model_settings.get('top_p', NOT_GIVEN),
                truncation=model_settings.get('openai_truncation', NOT_GIVEN),
                timeout=model_settings.get('timeout', NOT_GIVEN),
                reasoning=reasoning,
                user=model_settings.get('openai_user', NOT_GIVEN),
                extra_headers={'User-Agent': get_user_agent()},
            )
        except APIStatusError as e:
            if (status_code := e.status_code) >= 400:
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.body) from e
            raise

    def _get_reasoning(self, model_settings: OpenAIResponsesModelSettings) -> Reasoning | NotGiven:
        reasoning_effort = model_settings.get('openai_reasoning_effort', None)
        reasoning_generate_summary = model_settings.get('openai_reasoning_generate_summary', None)

        if reasoning_effort is None and reasoning_generate_summary is None:
            return NOT_GIVEN
        return Reasoning(effort=reasoning_effort, generate_summary=reasoning_generate_summary)

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[responses.FunctionToolParam]:
        tools = [self._map_tool_definition(r) for r in model_request_parameters.function_tools]
        if model_request_parameters.output_tools:
            tools += [self._map_tool_definition(r) for r in model_request_parameters.output_tools]
        return tools

    @staticmethod
    def _map_tool_definition(f: ToolDefinition) -> responses.FunctionToolParam:
        return {
            'name': f.name,
            'parameters': f.parameters_json_schema,
            'type': 'function',
            'description': f.description,
            # NOTE: f.strict should already be a boolean thanks to customize_request_parameters
            'strict': f.strict or False,
        }

    async def _map_messages(
        self, messages: list[ModelMessage]
    ) -> tuple[str | NotGiven, list[responses.ResponseInputItemParam]]:
        """Just maps a `pydantic_ai.Message` to a `openai.types.responses.ResponseInputParam`."""
        openai_messages: list[responses.ResponseInputItemParam] = []
        for message in messages:
            if isinstance(message, ModelRequest):
                for part in message.parts:
                    if isinstance(part, SystemPromptPart):
                        openai_messages.append(responses.EasyInputMessageParam(role='system', content=part.content))
                    elif isinstance(part, UserPromptPart):
                        openai_messages.append(await self._map_user_prompt(part))
                    elif isinstance(part, ToolReturnPart):
                        openai_messages.append(
                            FunctionCallOutput(
                                type='function_call_output',
                                call_id=_guard_tool_call_id(t=part),
                                output=part.model_response_str(),
                            )
                        )
                    elif isinstance(part, RetryPromptPart):
                        # TODO(Marcelo): How do we test this conditional branch?
                        if part.tool_name is None:  # pragma: no cover
                            openai_messages.append(
                                Message(role='user', content=[{'type': 'input_text', 'text': part.model_response()}])
                            )
                        else:
                            openai_messages.append(
                                FunctionCallOutput(
                                    type='function_call_output',
                                    call_id=_guard_tool_call_id(t=part),
                                    output=part.model_response(),
                                )
                            )
                    else:
                        assert_never(part)
            elif isinstance(message, ModelResponse):
                for item in message.parts:
                    if isinstance(item, TextPart):
                        openai_messages.append(responses.EasyInputMessageParam(role='assistant', content=item.content))
                    elif isinstance(item, ToolCallPart):
                        openai_messages.append(self._map_tool_call(item))
                    else:
                        assert_never(item)
            else:
                assert_never(message)
        instructions = self._get_instructions(messages) or NOT_GIVEN
        return instructions, openai_messages

    @staticmethod
    def _map_tool_call(t: ToolCallPart) -> responses.ResponseFunctionToolCallParam:
        return responses.ResponseFunctionToolCallParam(
            arguments=t.args_as_json_str(),
            call_id=_guard_tool_call_id(t=t),
            name=t.tool_name,
            type='function_call',
        )

    @staticmethod
    async def _map_user_prompt(part: UserPromptPart) -> responses.EasyInputMessageParam:
        content: str | list[responses.ResponseInputContentParam]
        if isinstance(part.content, str):
            content = part.content
        else:
            content = []
            for item in part.content:
                if isinstance(item, str):
                    content.append(responses.ResponseInputTextParam(text=item, type='input_text'))
                elif isinstance(item, BinaryContent):
                    base64_encoded = base64.b64encode(item.data).decode('utf-8')
                    if item.is_image:
                        content.append(
                            responses.ResponseInputImageParam(
                                image_url=f'data:{item.media_type};base64,{base64_encoded}',
                                type='input_image',
                                detail='auto',
                            )
                        )
                    elif item.is_document:
                        content.append(
                            responses.ResponseInputFileParam(
                                type='input_file',
                                file_data=f'data:{item.media_type};base64,{base64_encoded}',
                                # NOTE: Type wise it's not necessary to include the filename, but it's required by the
                                # API itself. If we add empty string, the server sends a 500 error - which OpenAI needs
                                # to fix. In any case, we add a placeholder name.
                                filename=f'filename.{item.format}',
                            )
                        )
                    elif item.is_audio:
                        raise NotImplementedError('Audio as binary content is not supported for OpenAI Responses API.')
                    else:  # pragma: no cover
                        raise RuntimeError(f'Unsupported binary content type: {item.media_type}')
                elif isinstance(item, ImageUrl):
                    content.append(
                        responses.ResponseInputImageParam(image_url=item.url, type='input_image', detail='auto')
                    )
                elif isinstance(item, AudioUrl):  # pragma: no cover
                    client = cached_async_http_client()
                    response = await client.get(item.url)
                    response.raise_for_status()
                    base64_encoded = base64.b64encode(response.content).decode('utf-8')
                    content.append(
                        responses.ResponseInputFileParam(
                            type='input_file',
                            file_data=f'data:{item.media_type};base64,{base64_encoded}',
                        )
                    )
                elif isinstance(item, DocumentUrl):  # pragma: no cover
                    client = cached_async_http_client()
                    response = await client.get(item.url)
                    response.raise_for_status()
                    base64_encoded = base64.b64encode(response.content).decode('utf-8')
                    content.append(
                        responses.ResponseInputFileParam(
                            type='input_file',
                            file_data=f'data:{item.media_type};base64,{base64_encoded}',
                            filename=f'filename.{item.format}',
                        )
                    )
                elif isinstance(item, VideoUrl):  # pragma: no cover
                    raise NotImplementedError('VideoUrl is not supported for OpenAI.')
                else:
                    assert_never(item)
        return responses.EasyInputMessageParam(role='user', content=content)

__init__

__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal["openai", "deepseek", "azure"]
        | Provider[AsyncOpenAI]
    ) = "openai"
)

Initialize an OpenAI Responses model.

Parameters:

Name Type Description Default
model_name OpenAIModelName

The name of the OpenAI model to use.

required
provider Literal['openai', 'deepseek', 'azure'] | Provider[AsyncOpenAI]

The provider to use. Defaults to 'openai'.

'openai'
Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
def __init__(
    self,
    model_name: OpenAIModelName,
    *,
    provider: Literal['openai', 'deepseek', 'azure'] | Provider[AsyncOpenAI] = 'openai',
):
    """Initialize an OpenAI Responses model.

    Args:
        model_name: The name of the OpenAI model to use.
        provider: The provider to use. Defaults to `'openai'`.
    """
    self._model_name = model_name
    if isinstance(provider, str):
        provider = infer_provider(provider)
    self.client = provider.client

model_name property

model_name: OpenAIModelName

The model name.

system property

system: str

The system / model provider.